Necessary and Sufficient Conditions for a Hamiltonian Graph
نویسندگان
چکیده
A graph is singular if the zero eigenvalue is in the spectrum of its 0-1 adjacency matrix A. If an eigenvector belonging to the zero eigenspace of A has no zero entries, then the singular graph is said to be a core graph. A (κ, τ)-regular set is a subset of the vertices inducing a κ-regular subgraph such that every vertex not in the subset has τ neighbours in it. We consider the case when κ = τ which relates to the eigenvalue zero under certain conditions. We show that if a regular graph has a (κ, κ)-regular set, then it is a core graph. By considering the walk matrix we develop an algorithm to extract (κ, κ)-regular sets and formulate a necessary and sufficient condition for a graph to be Hamiltonian.
منابع مشابه
0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملHamiltonian Cycles in the Square of a Graph
We show that under certain conditions the square of the graph obtained by identifying a vertex in two graphs with hamiltonian square is also hamiltonian. Using this result, we prove necessary and sufficient conditions for hamiltonicity of the square of a connected graph such that every vertex of degree at least three in a block graph corresponds to a cut vertex and any two these vertices are at...
متن کاملHamiltonian powers in threshold and arborescent comparability graphs
We examine powers of Hamiltonian paths and cycles as well as Hamiltonian (power) completion problems in several highly structured graph classes. For threshold graphs we give efficient algorithms as well as sufficient and minimax toughness like conditions. For arborescent comparability graphs we have similar results but also show that for one type of completion problem an ‘obvious’ minimax condi...
متن کاملInduced S(K1, 3) and hamiltonian cycles in the square of a graph
We show that under certain conditions the square of the graph obtained by identifying a vertex in two graphs with hamiltonian square is also hamiltonian. Using this result, we prove necessary and sufficient conditions for hamiltonicity of the square of a connected graph such that every vertex of degree at least three in a block graph corresponds to a cut vertex and any two these vertices are at...
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کامل